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Abstract

We present a spatially-explicit individual-based model of rodent dynamics, customized for the prairie
vole species, Microtus ochrogaster. The model strives to represent the complexity of intertwining factors
that determine the spatio-temporal dynamics of small rodents. It is based on trophic relationships
and incorporates important features such as territorial competition, mating behavior, density-dependent
predation and dispersal out of the modeled spatial region. Vegetation growth and vole fecundity are
dependent on climatic components. The results of simulations show that the model correctly predicts
the overall temporal dynamics of the population density. Time-series analysis shows a very good match
between the periods corresponding to the peak population density frequencies predicted by the model
and the ones reported in the literature. The model is used to study the relation between persistence,
landscape area and predation. We use the notions of average time to extinction (ATE) and persistence
frequency to quantify persistence. While the ATE decreases with decrease of area, it is a bell-shaped
function of the predation level: increasing for ”small” and decreasing for ”large” predation levels.

Keywords: individual-based, spatially-explicit, Microtus ochrogaster, patch size, population persistence,

multiannual fluctuations
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1 Introduction

Complexity is a concept used in a variety of disciplines including computer science, physics and biology. While

computational complexity is well defined as a measure of the resources (time, memory) needed to solve a

computational problem of a given size, there is no widely accepted definition of complexity in the rest of the

disciplines (Vicsek, 2002; Adami, 2002). The term ecological complexity has been used to denote the number

of species in an ecosystem and the variety of interactions between them (Petersen et al., 2003; Mathews and

Marsh-Mathews, 2003). Six types of ecological complexity: spatial, temporal, structural, process, behavioral,

and geometric, were singled out in a recent article (Loehle, 2004). While one could argue about the usefulness

or completeness of such a classification, it is clear that the behavior of an ecological system is shaped by a

large variety of factors acting on different temporal, spatial, and individual scales.

The character of inter-species interactions is defined not simply by the size of the populations (as assumed

in classical population dynamics approaches) but also by the the population structure, i.e. by factors acting

at the individual organism’s scale. The features of the individual organisms such as their specific spatial

location, metabolic needs, ability to generate offspring or probability to die, are dynamically changing

quantities. They are determined by the interactions of the individual with other individuals from the same

and other species as well as by the action of external factors such as climate. Thus, even a system of a small

number of populations can be complex because the laws governing its change in time and space are difficult

to predict and represent an emergent property of the dynamically changing states of the many individuals

that comprise it.

Models of ecological systems that can capture the complexity of interactions determined by the pop-

ulation structure require new, non-classical approaches. Individual-based models (IBM) allow to represent

populations as consisting of individuals with different states changing in time due to their interactions with

other individuals and other species and due to the influence of external factors. Spatially-explicit models

add additional level of complexity by allowing to investigate spatio-temporal effects on the dynamics of

populations. Thus, spatially-explicit individual-based models are capable of explaining ecosystem behavior

as a consequence of spatial interactions at the individual organism level. The complexity of these models

is measured by the number of individual states and the richness of interactions that determine the overall
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behavior of the system.

As part of a project to determine the impact of habitat loss and fragmentation as a result of oil explo-

ration and production on natural ecosystems (Efroymson et al., 2004), we have developed a spatially-explicit

individual-based simulation model parametrized for the prairie vole species (Microtus ochrogaster) and its

trophic dependence on a tallgrass vegetation species. It can be used for monogamous rodent species exhibit-

ing territorial behavior and applicable for grassland habitats. As small rodent species are a food resource

for a large variety of carnivorous species, evaluation of their extinction risk under habitat fragmentation and

habitat loss conditions is important for determining the status of the full ecosystem. Because the model

incorporates a complex structure of intertwining factors determining the spatio-temporal dynamics of small

rodents, it can be considered as a ”virtual rodent dynamics laboratory” enabling studies (via virtual ex-

periments) of various scientific questions related to rodent dynamics. These could include, among other

problems, the determination of factors underlying the annual and multiannual population density fluctua-

tions that microtines have long been known to exhibit.

A preceding, simpler version of the present model is described in (Kostova et al., 2004). This model

enabled predictions such as the wave-like spatio-temporal structure of the population dynamics of the vole

density. We have recently found support of these predictions in a field vole study (Mackinnon et al., 2001)

which presented evidence for the existence of population density traveling waves. Experiments with this

simpler model also pointed that fragmentation of the vole habitat can, in some cases, have beneficial effect

on the persistence of the population. However, this model did not take into consideration mechanisms of

population density regulation such as predation and dispersal out of the patch and thus could account only for

cases where the patch was enclosed and predator-free. Although it did predict correctly the experimentally

found vole densities in enclosures, it was not applicable to model rodent dynamics in natural conditions.

To enable more realistic simulation studies of rodent-grass dynamics, we increased the complexity of

the model by introducing a number of new features. The new model includes mechanisms accounting

for the dispersal of animals out of the region and for population losses due to predation. Additionally,

we incorporated accurate relationships between the metabolic need, body size and caloric uptake of each

individual animal and generated vegetation growth rates based on actual temperature and precipitation data.

These extended features allow to use the model for studies on the relationship between climatic ”bottlenecks”
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(causing scarce or lacking vegetation), habitat loss, fragmentation and predation on the one hand, and the

average time to extinction (ATE) of the rodent population, on the other.

Vole and other small rodent studies are extremely abundant as these animals are easy to handle by

experiment. Correspondingly, there is a large body of ”vole models”. Our model should be compared to

models in its class, i.e. the spatially-explicit, individual based models. Our literature search uncovered

several models in this category, (Aars and Ims, 2000; Bonesi et al., 2002; Bujalska and Grum, 1989; Hayward

et al., 1999; Marzluff et al., 2002; Macdonald and Rushton, 2003; Rushton et al., 2000; Schneider, 2001;

Topping et al., 2003). Even in this group some of the models are not comparable to ours.

First, some of these models focus on very specific problems such as the evolution of genetic diversity of

vole populations (Topping et al., 2003; Aars and Ims, 2000) or the importance of social relationships (Bujalska

and Grum, 1989) and are specifically developed to answer these questions. On the contrary, our model can be

used to test a large variety of hypotheses involving relationships among landscape characteristics (landscape

size, vegetation structure of landscape, vegetation abundance), climatic factors, rodent behavioral strategies.

Second, the various vole species have adapted to different environments including grassland, forests and

rivers. Our model is applicable to small rodent species in grassland environments and is not comparable

to models of water voles (Rushton et al., 2000; Bonesi et al., 2002) and voles living in forest environments

(Hayward et al., 1999; Marzluff et al., 2002). Finally, among the ”most comparable” models (Schneider,

2001; Macdonald and Rushton, 2003), none possess the generality, complexity and detail of our model. Its

distinctive feature is to express the trophic relationship between the rodent and its environment by including

climate-dependent vegetation growth rates and rodent grazing rates accounting for the bioenegetic needs of

the vole. Our model is based on data and behavioral descriptions extracted from a vast amount of literature.

In conclusion, to the best of our knowledge, no model of small rodents dynamics of comparable complexity

exists.

In our opinion, the form of presenting an individual-based model is an important issue of general concern.

It is known that changing the order of execution of rules in a discrete simulation may change the result.

SERDYCA is a spatially-explicit IBM and its complexity gives rise to problems that have not been adequately

addressed. As the individual objects in such models have different internal states at the various discrete

time moments, the outcome of the simulation may depend on the order in which the individuals’ states
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are changed. The same problem arises in purely spatial, cellular automata-type simulations where it is

important in what order the cells change their states. If the model is of the most complexity, i.e. a spatially-

explicit IBM, both the orders of changing spatial and individual states might make a difference. Therefore

it is imperative that when a simulation is described, the exact order and interdependencies of functions are

transparently presented. The format of the current paper proposes a standard for such presentations.

We propose a robust mathematical form of representing individual based models as nonlinear discrete

maps. The usual form of IBM representation is a wordy description of each of the elements of the model

accompanied by a formula where needed. The exact order of executing the rules is often omitted and it

is usually unclear what values of the variables are used. This makes it difficult to understand the whole

structure of the code and to reconstruct it if desired. In this paper for the convenience of the reader, we also

describe each of the code’s functions(maps) with words and formulae. But we accompany this description

by a representation of the exact order in which the separate maps are executed as well as what arguments

each map uses and what values it generates. A completely rigorous representation would also describe the

exact form of the maps, as we did for the previous version (Kostova et al., 2004) but we have omitted it in

this publication for the sake of readability.

Naturally, the question arises, if the order of updating the states of the individual animals and spatial

cells does change totally the model results, then which order, if any, is the correct one? How to build models

that are not biased to a specific order of update execution? These are important problems but are out of

the scope of the current paper.

This paper presents the results of model simulations of the dependence of population density and time to

extinction on a) area size and b) level of predation. The simulations are carried out on artificial landscapes

without fragmentation. As the multiannual fluctuation patters of vole population densities are of major

scientific interest, we discuss our simulation results in this context as well.

2 General Properties and Structure of the Model

2.1 General properties

In our model, space is represented by a collection of square cells, each with an area equal to the average

home range area of the modeled species. An individual is allowed to move from each cell into any of its 8
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neighbors. This structure combines a high number of possible directions of movement (only a grid made of

equilateral triangles can ensure more (12) directions of movement) with an easy way to construct a lattice

of equal figures with area equal to the rodent home range.

The amount of vegetation in the cell is determined by growth and grazing rates. The rodent population

is substructured into classes of floaters and settled, males and females, juveniles, subadults and adults. The

settled class represents animals that remain in the same cell until some conditions occur that transforms

them into floaters (e.g. a settled adult becomes a floater if the vegetation in the cell is not enough to meet

its metabolic needs). The floater class represents animals that move to a new cell each day until certain

conditions occur that transform them into settled (e.g. if a floater male finds a cell occupied by a settled

single female, he becomes settled). The juveniles are below weaning age, the subadults are below maturation

age and the adults are the mature animals. Survival depends on reaching the lifespan limit and availability

of forage. Birthrates occur seasonally.

The model incorporates three important features: a) detailed metabolic relationships; b) a predation

mechanism; c) dispersal of animals out of the modeled landscape. These features were added to more

accurately model the trophic interactions between the herbivores and the vegetation.

The present state of knowledge on rodents bioenergetics allows for a credible model based on the trophic

approach. The diet of most species of Microtus is comprised of green vegetation as documented in the chapters

’Habitats’ by L. Getz and ’Nutrition’ by G. Batzli of the book by Tamarin (1985). Caloric estimates for

various types of forage exist in the literature (Klass, 1998; Griffin et al., 1980). The digestible energy of

forage is a certain percentage of its total energy, which depends on the specific animal species (Boisen and

Verstegen, 2000), and estimates for this percentage are available for a vast amount of vegetation types. The

metabolic needs of herbivores are met by obtaining the necessary amount of digestible energy by feeding. If

the daily metabolic needs of an individual vole are estimated (in kcals), the amount of vegetation necessary

to cover its needs can be calculated. Thus, the vegetation depletion caused by herbivores residing in a certain

region (in our model, in a spatial cell) can be calculated. Grazing is compensated by vegetation growth.

Knowing the rates of growth and grazing allows us to calculate the caloric quantity of vegetation in the cell.
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In the model this is done for convenience in kilocalories:

veget(n) = veget(n − 1) + AreaOfCell × digestive energy in kcals/gram dry mass × Wn −
∑

i

MetNeedi,

(2.1)

where veget(n) is the vegetation energy content in a spatial cell on day n, the area of the cell AreaOfCell

is in square meters, Wn is the daily rate of vegetation growth on day n in grams per day per square meter,

MetNeedi denotes the current metabolic need of a given animal (numbered i) and the summation is done

for all the animals in a spatial cell.

When the total metabolic needs of the animals in a cell exceed the caloric equivalent of the vegetation

present in the cell, the vegetation cover is “overgrazed” and the animals do not gain weight. Starvation

for over a certain amount of days leads to death. On the other hand, if the metabolic needs are met,

the herbivores gain weight until they reach the maximum weight for the species and can also successfully

reproduce.

In the model we first construct an input file of the daily vegetation growth rates by using real tempera-

ture and precipitation data. Next, to evaluate the vegetation quantity grazed by the individual herbivores

present in the spatial cell, we establish the specific metabolic needs of each animal based on its weight and

physiological condition (taking into consideration whether the animal is in the weaning age, pregnant or lac-

tating). We introduce the weight of an animal as a dynamic variable which changes depending onto whether

its metabolic needs are met. Thus, interrelations between the weight of an animal, its metabolic needs, its

physiological status and age and the food availability in the environment are incorporated in our model.

The modeled relationships were constructed to be trophically related. The survival of an herbivore is

dependent on the time of starvation (if any). The way a floater animal chooses a new location to move to

depends onto whether the vegetation quantity there will meet its metabolic needs. If more than one floater

wants to stay in the same location, the one with the largest weight wins. Both juveniles and subadults are

not considered able to relocate; juveniles do not graze.

Finally, predation and dispersal out of the region have been incorporated into the model. In previous

work, the absence of these features led to high population densities and subsequent overgrazing of the modeled

closed regions. In order to adequately evaluate the effect of fragmentation and area reduction, however, it is

important to model naturally occurring densities.
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2.2 General structure

Time is represented as discrete units 0, 1, ...k, ... and all variables of the model are updated at each time

increment. The time unit represents one day and all rates in the model are daily rates. The general structure

of the model can be represented as

Input and Initialization → Time Loop → Output.

The time loop is executed until the population goes extinct (i.e. the number of rodents in each cell

becomes zero) or until the input vegetation data is exhausted, whichever comes first. The input vegetation

data has been constructed for 30 years of real time. Figure 1 demonstrates the time loop in the order in

which it is executed.

The individual-based ideology is best represented computationally by the object-oriented approach. The

spatial cells and the individual animals are formulated as objects which possess constant and variable at-

tributes. The values of the variable attributes are calculated at each time increment via the object functions.

3 Input and Initialization

The first input parameter read is the number of consecutive runs of a model with the same parameter

values but with varying initial distributions of animals in space. The next input are the dimensions of the

spatial grid: NRows – number of rows, NCols – number of columns and the area of a cell, AreaOfCell,

in square meters. All cells are assumed to be the same and their area to be equal to the home range of the

rodent.

The home range size of a mammal species has been demonstrated to be related to its energetic needs

(McNab, 1963) as well as to population density, (Abramsky and Tracy, 1980; Gaines and Johnson, 1982).

It is measured either as the longest distance covered by an individual animal or in quadratic units (area

covered). The estimates of the prairie vole home range size, given by different authors and obtained by

different methods, vary significantly. Swihart and Slade (Swihart and Slade, 1989) estimate the prairie vole

home range length as about 30 m for reproductive males. Gaulin and FitzGerald (Gaulin and Fitzgerald,

1988) used radiotracking to estimate the daily home range to be between 210-340 m2 for males but report

that the daily home range is about 3-4 times smaller than the total home range. For the purpose of the
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Figure 1: A schematic representation of the time loop of the model. The arrows denote the order of events.
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model we have accepted the home range area to be approximately 30 m × 30 m.

Next, an input file containing the spatial information for the modeled region is opened. The modeled

region may have any shape but is enclosed in a rectangle. Thus, some of the cells of the rectangle may not

actually belong to the modeled region. For each cell, an integer number encodes whether the cell belongs to

the region, what type of vegetation (if any) grows in the cell and whether the cell is at all penetrable (see

sections 3.2 and 3.3 for more detail).

Further, an input file containing simulated rates of vegetation growth is open for reading. The first value

of the file is the initial quantity of vegetation per m2. This quantity is the same for all spatial cells which

have that vegetation cover. The construction of this file is described next.

Finally, the constant object attributes are read from an input file, while the variable attributes values

are initialized. The constant and variable attributes as well as their units, values, source and initialization

details are described in the following sections.

3.1 Vegetation growth rates

Vegetation is assumed to grow with rates depending only on environmental conditions such as temperature

and precipitation and not on the rate of grazing or on other factors. We used weather data for the years

1960-1990 from the Tulsa, Oklahoma airport weather station. This weather station is about 70 miles from

the Tallgrass Prairie Preserve, a location where prairie vole populations are known to exist. A parameter set

developed for the Konza Prairie Research Natural Area was used for vegetation-type dependent parameters.

The calculations were carried out by using the CENTURY version 4.0 model (Parton et al., 2000) of

grassland dynamics. CENTURY is a general model of plant-soil nutrient cycling and computes the flow of

carbon and other elements through the model’s compartments. Using the model, a 30-year simulation data

set for the average production of carbon in aboveground monthly standing crop of tall grass prairie vegetation

(in grams per square meter) for the Tallgrass Prairie Preserve was produced. The data set contains monthly

quantities of carbon per square meter. The conversion formula

1 gramC/m2

A
= 1 gram dry biomass/m2,

where A=0.475 (Klass, 1998), is then used to obtain the monthly dry vegetation mass per square meter.

Further, the monthly data are interpolated linearly to obtain daily dry mass quantities per m2 for the 30
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Figure 2: Estimated daily dry vegetation biomass (g/m2) used as input for the model and calculated from
temperature and precipitation data. See text for further explanation.

year period (Figure 2). Each month is considered to have 30 days.

A file containing the initial dry mass quantity (for the first simulation day, designated as V0) and the

differences between the consecutive days, i.e. the daily growth rates was then created. This is the input

vegetation growth rate data file, which contains the values Wn from (2.1).

3.2 Constant attributes

Constant cell attributes

Two types of spatial cell constant attributes are the coordinates of the cell (row and column) and its area

AreaOfCell.

For each cell object, an attribute called presence denotes the type of the cell. A value equal to -9999

has the meaning that the cell is not suitable for habitation but still “penetrable”, if forced by territorial
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competition, animals could enter such cells. For example, these may be spatial cells that have vegetation

not foraged by the species or that have been degraded by oil or brine spills. Value of presence = 0 denotes

”barrier” cells such as rivers, buildings, fences, pipelines, etc. impenetrable by the animals. Other values can

be codes for vegetation types, such as V egetationCode (Table 1). In the current simulations, this attribute is

treated as constant, i.e. the types of the spatial cells are predetermined from the beginning and remain such

to the end of the simulation. A dynamically changing environment with appearing and gradually healing

pollution spots will imply the use of this attribute as a variable.

Constant animal attributes

The constant attributes relating to the rodent species are presented on Table 1. Some of these attributes

require additional clarification.

The natural life span of M. ochrogaster can reach up to 450 days (Getz et al., 2000), but the average life

expectancy of small microtines is reported to be much shorter. The average life span used in our model is a

fixed value above which no animal survives.

Despite our extensive literature search, we were able to uncover very scarce data on the length of the

period a microtine can endure without food. Voltura and Wunder (Voltura and Wunder, 1998), carried out

experiments where prairie voles on restricted access to food (3 hours morning and 3 hours evening feeding)

at 5 degrees C appeared very exhausted on the 7th day. Full starvation was described by Mosin (Mosin,

1982, 1984) who finds that voles of the species Clethrionomys rutilus and Clethrionomys rufocanus died after

24-26 hours of full starvation due to hypoglycemia. We have tentatively assumed an ”optimistic” starvation

period of 4 days.

There may be more than one type of vegetation in the modeled region. Each type of vegetation is thus

encoded by an integer. The code of foraged vegetation defines the type of vegetation foraged by the modeled

species (M. ochrogaster).

Digestible energy is the digestible caloric value DigEnergy of the vegetation foraged by the modeled

species. The caloric value of grasses is in the range of 4.4 kcal/g (Klass, 1998). Studies on the nutrition

of the prairie vole reveal that this species digests roughly 50% of the dry matter and energy in bluegrass

(Cole and Batzli, 1979), which we assume to be in a similar range for tallgrass species. We conclude that

the digestible energy caloric content of tallgrass is ≈ 2.2 kcal/g.
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Table 1. Constant animal objects’ attributes.

Description Notation Current Value Source

average life span LifeSpan 90 - 300 days (a),(b)
maturation age MaturationAge 30 days (c)
age of weaning WeaningAge 15 days (c)
maximum adult weight MaxAdultWeight 50 grams (c), (d), (e)
weight at birth WeightAtBirth 3 grams
subadult rate of weight growth SubAdultGrowthRate 1.5 grams/day (c)
juvenile rate of weight growth JuvenileGrowthRate 0.5 grams/day (c)
gestation period GestPeriod 21 days (f), (g)
average length of starvation period StarveLimit 4 days
average litter size LitterSize 4 (c)
adult predation coefficient AdultPredationCoefficient see section 4.2
juvenile predation coefficient JuvenilePredationCoefficient see section 4.2
code of vegetation foraged V egetationCode 1
digestible energy DigEnergy 2.2 kcal/g (h), (i), (g)

In column 4 (a)=(Getz et al., 2000), (b)=(Rose and Dueser, 1980), (c)=(Tamarin, 1985), (d)=(Gaulin and Fitzgerald,

1988), (e)=(Desy and Batzli, 1989), (f)=(Getz and McGuire, 1993), (g)=(Rose and Gaines, 1978), (h)=(Klass, 1998),

(i)=(Cole and Batzli, 1979), (g)=(Altman and Dittmer, 1968).

3.3 Variable attributes

Variable animal attributes.

The variable animal attributes are represented on Table 2. The meaning of most variable attributes is

self-evident, but some clarifications are due. The time of starvation is the number of consecutive days the

herbivore has been deprived of food. When this time surpasses StarveLimit, the animal is declared dead

by changing the value of the variable remove to 1. The default value of remove is 0. Each animal belongs

to either the resident or the floater class. A floater changes its location at each time increment (day) until

it becomes a resident. A resident stays at the same cell location until the cell becomes uninhabitable, i.e.

when the vegetation is insufficient to meet its metabolic needs. The status variable takes character values

“s” (resident) or “f” (floater). The birth index takes the value 1 if the time has come the (female) animal to

produce offspring. Otherwise it is set to 0.

Next, the code constructs initial distribution of animals in the cells. They are generated in a random

manner as follows. For each spatial cell, a random number between 0 and a predefined number (usually

between 3 and 5) is generated. This gives the initial number of animals present in the cell. Next, for all

generated animal objects, the following initial values at time 0 are set: starvation(0) = 0, remove(0) =

0, status(0) =′′ f ′′, T imeSinceBirth(0) = 0, T imeSincePregn(0) = 0, birth(0) = 0. The other variable
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Table 2. Variable animal attributes

Description Notation Units or values

time of starvation starvation days
death index if =1, animal is removed from list remove
row of animal’s cell r
column of animal’s cell c
gender of animal gender “m” or “f”
resident or floater status status “s”, “f”
weight of animal weight grams
metabolic need of animal MetNeed kcals
available vegetation per capita in animal’s cell eveg kcals
age of animal age days
time since animal gave birth T imeSinceBirth days
time since start of pregnancy T imeSincePregn days
index of birth birth 1, 0

attributes are initialized as follows. For half of the generated animal objects gender(0) =′′ m′′, for the

rest gender(0) =′′ f ′′. The row and column of the cell define the initial values of r(0) and c(0) for each

generated animal object belonging to the cell. For each animal, age(0) is generated as a random number

between MaturationAge and LifeSpan. Weight(0) is random number between the approximate weight

at maturity (30 grams for the prairie vole) and MaxAdultWeight(0). MetNeed(0) is calculated using the

formula described below in Section 4.2.

Variable cell attributes.

The variable cell attributes are shown on Table 3. The initial mass of vegetation per m2 in each cell is

the initial number V0 supplied by the vegetation data input file described in section 3.1. Thus, initially we

assume uniform vegetation density over the whole simulated area. The variables veget and vegdeplet are

initialized for time 0 as

veget(0) = V0 × DigEnergy × AreaOfCell. (3.1)

and vegdeplet(0) = 0.

The initialization of the population numbers and animal weights in the cells is carried out by traversing

the already generated initial list of rodents and finding the number of male and female animals generated

for each cell, malpop(0), fempop(0) as well as malmaxweight(0), femmaxweight(0). As all animals have

been initially defined as floaters, the initial values settlmalpop(0) = 0 and settlefempop(0) = 0.
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Table 3. Variable cell objects’ attributes.

Description Notation Units

caloric value of total vegetation in cell veget kcals
caloric value of vegetation grazed during 1 day vegdeplet kcals
total male/female population in the cell malpop/fempop
resident male/female population in the cell settlmalpop/settlefempop
resident/total population in cell settlpop/pop
weight of largest male/female floater animal in cell malmaxweight/femmaxweight grams

4 The Time Loop

After obtaining the constant cell and animal values and initializing the variable ones, the simulation model

proceeds to calculating the values of the variable cell and animal attributes at consecutive time points. This

is done by executing a time loop with increments of 1 day. In the course of the day, the model assumes

that events like aging, satisfying metabolic needs, weight gain, vegetation grazing, predation and survival,

pregnancies, births and deaths and spatial relocation happen. These occur in the order outlined on Figure

1. Because the input vegetation data is generated for 30 years (the period of available weather data), or

10800 days, each simulation has a time loop from day 1 to 10800 or is terminated in case that there are no

surviving animals.

Mathematically, the procedure can be described as a nonlinear map transforming the cell and animal

variable attributes at each time step of the loop, (Kostova et al., 2004). By arranging the attributes of each

cell and each animal object in column vectors and grouping the cell and animal columns we obtain matrices

C(n) and A(n).

For each time increment n, the cell matrix C(n) has the form

C(n) = (~c1(n), ...~cK(n)) (4.1)

where

~ci(n) = (vegeti(n), vegdepleti(n), malpopi(n), fempopi(n), settlmalpopi(n), settlefempopi(n),

settlpopi(n), popi(n), malmaxweighti(n), femmaxweighti(n))T , i = 1, ...K

(4.2)

is a vector comprised of the variable attributes at time n of the i-th cell and i runs from 1 to K = NRows×

NCols. As usual, the superindex T denotes transposition, i.e. ~ci is the column vector obtained from the

row vector in (4.2) above.

17



Similarly, the animal matrix A(n) has the form

A(n) = (~a1(n), ...~aN(n)(n)) (4.3)

where ~aj(n), j = 1, ..., N(n) is a vector comprised of the variable attributes at time n of the j-th animal,

N(n) is the number of “alive” animal objects (i.e. such that the attribute remove is not 1) and j runs from

1 to N(n).

~aj(n) = (starvationj(n), removej(n), rj(n), cj(n), genderj(n), statusj(n), weightj(n), MetNeedj(n),

agej(n), T imeSinceBirthj(n), T imeSincePregnj(n), birthj(n))T .

(4.4)

Proceeding from time n to time increment n + 1, the matrices C(n + 1) and A(n + 1) are calculated

iteratively by using the values C(n) and A(n). The combination of rules defining how the new values at time

n + 1 are obtained from the old ones at time n represent the map Φ(n).

The details of the rules governing the model are included in the Appendix.

5 Results of Exploratory Simulations with Artificial Landscapes

A C++ code which we named SERDYCA (Spatially-Explicit Rodent DYnamics Computation and Anal-

ysis) implements the above described model and is available for use by request to the authors. The code is

supplemented with a graphic user interface and can be used in both Linux and Windows environment.

In this section we describe the results of simulations using the model on artificial landscapes. These

landscapes represent square regions of various areas. Initially the landscape has the same density of vegetation

over the entire region. 200 simulations were carried out for each area and predation level (PL). The simulation

time depends on the size of the landscape as well as on the PL. For large areas and small predation, the

model generated very high population numbers which required respectively a larger amount of calculations.

We conducted a series of simulation experiments on landscapes of 25x25, 50x50, 100x100, 150x150,

200x200 and 250x250 home ranges and for several sets of values of the parameters APC=Adult Predation

Coefficient, JPC= Juvenile Predation Coefficient, where we varied APC and kept JPC = 2APC. Each

simulation was initialized by generating an initial animal population in every cell consisting of 0, 1 or 2 (a

random number) of randomly generated animals (see Section 3.3).

5.1 Population density: the role of area and predation

Although the initial spatial animal distributions varied in each simulation instance, the total numbers
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(for the whole landscape) of generated animals did not vary much and approached the number of cells,

K, for large K. This is not surprising because the initialization of animals is equivalent to conducting K

independent experiments with three outcomes: 0,1,2. For any K, the probability that n1 cells contain one

animal, n2 - two animals and K − n1 − n2 - zero animals is

K!

3Kn1!n2!(K − n1 − n2)!
, (5.1)

and the expectation of the number of generated animals is

∑

n1=0,...,K;n2=0,...,K−n1

K!

3Kn1!n2!(K − n1 − n2)!
(n1 + 2n2) = K (5.2)

i.e. one per cell. One would expect that for large K the initially generated density per cell would be close

to 1.

For landscapes of 25x25 cells the initial number of animals in the 200 experiments was between 280 and

320, i.e. on average 0.48 per cell and 5.3/ha, for landscapes of 50x50 cells these numbers were respectively

between 1700 and 1850, 0.7/cell and 8/ha. The numbers per cell and ha increased with the increase of

landscape size, approaching 1. For landscapes of 250x250 cells the respective numbers were between 58000

and 59000 with 0.92 animals per cell and 10.4/ha.

The initially generated animal distributions obviously did not depend on the level of predation. However,

when the calculations were carried out, for each fixed PL, the density of animals had the same maximum

amplitudes, which were characteristic for the PL and did not depend on the size of the landscape (Figure 3) or

on the initial density distribution. For example, the maximum density corresponding to APC = 0.02, 0.2, 0.4

was approximately the same for all six landscape sizes and was about 45/ha, 9/ha and 4/ha respectively.

We note that Figure 3 shows densities starting from month 1 and thus the initial densities (month 0) are

not visible.

We carried out simulations by gradually increasing the PL (i.e. increasing APC). In all cases the

maximum density was independent of the landscape area but decreased with the increase of the PL. This

is illustrated on Figure 3, where we show results for the three mentioned above predation levels, which we

denote as ”low” (APC=0.02), ”optimal” (APC=0.2) and ”high” (APC=0.4) PL.
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Figure 3: Population densities for various initial animal distributions and ”low” (APC=0.02), ”optimal”
(APC=0.2) and ”high” (APC=0.4) PL on landscapes with different sizes. Different curves represent different
runs. Maximum population densities are affected by predation but not by area size. The y-axis represents
the total number of voles per ha.
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5.2 Calibration of the model

The maximum and average population densities of M. ochrogaster vary in different environments. For

example, a 25 year study of the population dynamics of prairie voles in three different types of habitats,

(Getz et al., 2001), show that the maximum density can reach more than 50/ha in alfalfa, 20/ha in bluegrass

and 8/ha in tallgrass covered habitats.

As the only non-established parameter values of our model are the PL coefficients, and as the max-

imum densities in our model appear to be area-independent but monotonous with respect to the values

of APC, JPC, we calibrated the model by finding values of APC, JPC for which the maximum popu-

lation density is between 7 and 9/ha (shown on Figure 3, middle column). The calibrated values are

APC = 0.2, JPC = 0.4. We will see further why these values are named ”optimal”.

5.3 Average time to extinction

If we observe the vegetation input (Figure 2), we note the existence of “bottlenecks” of very low amounts

of vegetation in the end of the 4-th, 16-th, 20-th and 28-th years of the simulation. In the simulations these

specific times are extinction-sensitive points. When varying the initial animal distributions, in certain cases

the population dies out shortly after these specific times. Figure 3 illustrates these observations. Starting

from the top left plot and going to the right, we see that on the smallest landscape consisting of 25x25 home

ranges the vole populations perish before reaching even half of the simulated time period of 30 years and

that there is a high variability in the population persistence in the various simulations. Moving down on

Figure 3, we observe that the larger the area size, the more persistent the populations become and the more

alike are the population density patterns.

We performed 200 simulations with randomly-varied initial animal distributions for each experimental

setting (fixed landscape area or PL). The time for which the vole population persists (is non-zero) in the

simulation is called its time to extinction (TE). The average value of TE for each set of 200 simulations is

called the average time to extinction (ATE). The time series for the 25×25 and 50×50 areas are shorter in

all simulations this habitat size was insufficient to maintain persisting vole populations for the whole 30 year

period.

We compared the ATE for the various landscape sizes and PLs. The results are summarized on Figure 4.

21



We found that unlike the maximum vole population density, the ATE is sensitive to both area and predation.

Increasing area in all tested cases led to increase in the ATE (Figure 4, middle).

The relation between ATE and predation was not straightforward. ATE increased when predation is

small but decreased for high PLs. Our calculations showed that for the calibrated PL (the one generating

densities characteristic of tallgrass prairie, aA = 0.2, aJ = 0.4) the ATE was the largest compared to all

other PLs for which we performed simulations (including what we call ”low” and ”high” PLs) (Figure 4,

bottom). This is the reason we call it ”optimal” PL.

Besides comparing the ATE, it is informative to consider the persistence frequency depending on area and

predation. This is defined as the percentage of the simulations in which the population did not go extinct

(until year 30). Figure 4 (top) shows that for the ”low” PL and all landscape sizes populations do not persist

in 100% of the simulations. This is explained in the following way. Since ”low” predation results in high

population density, a leading cause of this low persistence is the higher mortality in the winter months as a

result of severe overgrazing of the scarce vegetation cover.

However, Figure 4 also shows that populations do not persist in 100% of the simulations also for areas

smaller than or equal to 50x50 cells independently of the predation level. Thus, there is a threshold of area

size below which the population persistence frequency is zero.

Maximim population density was shown to be not sensitive to area. Thus, when reducing landscape size,

persistence decreases due to factors not related to the value of the maximum population density. Rather,

reduced persistence is caused by the low (late winter) total numbers of surviving of voles in the small

landscapes. Smaller landscapes provide a smaller number of surviving individuals to restore the population

after a period of insufficient vegetation and no births (winter months). A part of these individuals are unable

to find a mate and create offspring. The larger the landscape the bigger the number of cases when clusters

of individual survive and successfully restore the local population.

The persistence frequency grows rapidly with increasing the landscape size for higher PLs (Figure 4, top).

Thus, the combination of increased predation and larger landscape sizes contributes to prolonged persistence.
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Figure 4: Different representations of the dependence of the ATE on area and predation. Top: percentage
of simulations with extinction; middle: dependence of ATE on area for three PLs (AA = aA, AJ = aJ );
bottom: dependence of ATE on PL for various areas; the x-axis corresponds to aA.

23



5.4 Population density fluctuations

It is known that the population densities of many microtine rodents (and in particular of the prairie vole)

exhibit annual and multiannual fluctuations (Getz et al., 2001). The annual cycles are clearly connected

with seasonal factors, but the multiannual ones have not been explained. (Getz et al., 2001) mention that

spectral analysis of tallgrass prairie population densities reveals multiyear fluctuations with frequency peaks

of similar magnitude at 4.3 and 2.4 years with additional strong peaks at 2.1, 3.6 years. In bluegrass, prairie

vole densities fluctuated with main frequencies at 4.3, 2.4 and 10.7 years.

As seen on Figures 3 and 5, our simulations produce population densities with clear annual fluctuations.

Groups of multiannual fluctuations also clearly visible. Figure 3 shows that the fluctuations have a similar

character (the peaks are around the same time moments) for different landscape sizes. Thus, the size of the

habitat, according to our model, plays no role in establishing fluctuations patterns. Especially for large areas,

the time series exhibit very low variability as seen on Figure 5 which shows a plot of the simulated population

densities for 6 landscape areas and ”optimal” PL. Although the spatio-temporal population density patterns

differed completely between different simulations for the same areas, the time series were almost identical

for the larger than 50×50 plots. We have placed ”representatives” of the almost identical time series for

each area size on Figure 5. It is even more striking that the representative time series for different areas are

almost identical as well. These results suggest the existence of some kind of an ”attractor” solution which is

separable in time and space components, so that when the total density is calculated, the time component

determines the shape of the total population density time series.

Trying to understand this, an association with the properties of the wave equation Wt = Wxx comes to

mind. The latter equation has separable solutions, W (x, t) = W1(t)W2(x), and thus,
∫

Wdx is the same

function in time independently of the initial distribution. Thus, even though the spatial movements of voles

take into consideration factors such as mating opportunity and vegetation availability, the model is similar

to a diffusion model in the sense that it generates population density distributions that are ”separable” into

time and space components so that the time component determines the fluctuation patterns of the total

density.

Varying the values of the predation level did have some initial effect on the fluctuation pattern but for

larger times and on larger areas the fluctuations synchronized (observe Figure 3, bottom plots, from left to
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Figure 5: Simulated population densities for 6 landscape areas and ”optimal” PL in numbers of voles per
ha.

right). Thus, the shape of the attracting multiannual fluctuation patterns is not affected by the predation

level.

One method to uncover the features of the observed fluctuations is to perform time series spectral analysis.

We performed Fourier analysis of the mean population density time series (obtained by summing up the

population density time series for the simulations in which the population persisted for the whole 30 year

period (178 out of 200) and dividing by the number of simulations (178)). These were simulations for the

”optimal” PL and size of the artificial landscape 250x250 cells. The Fourier series whose coefficients are

depicted on Figure 6 was calculated using the package Mathematica. The x-axis represents the frequencies

n=1, ..., 360 in the representation of the series as a sum of exponentials ein3π/360. The y-axis represents

the coefficient with which each of the exponentials participates in the sum. Only the first 180 coefficients

are shown, the others are symmetrical to x = 180. The highest coefficient values show the dominating

frequencies. The value of 360/n gives the period corresponding to the frequency n.
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Figure 6: The values of the Fourier coefficients of the simulated vole density time series representing the
average of 178 time series in which the populations persisted for the whole 30 year period. The numbers
next to some of the points indicate the periods corresponding to the x-axis frequencies.

The highest peak at n=1 is neglected as it points to a period of 30 years which is the whole time period

of the series. Figure 6 shows that the dominant frequency (n=30) corresponds to a period of 12 months,

which reflects the annual fluctuations. The next dominant frequencies corresponded to periods of 2.3 years

and 2.5 years, followed by peaks at periods of 10 years, 3.75 years and 2.2 years. These results are close to

the ones observed by Getz et al. (2001), mentioned above with the exception that the 10 year peak was not

observed for tall grass populations and that the near to 4 years period peak is secondary in our results and

dominant in the data by Getz et al. (2001). Additional work is needed to understand whether the similarity

between these values is not coincidental.

We also performed spectral analysis of the vegetation time series (average time series of the vegetation

densities obtained from the 178 simulations) to see if there is similarity to the population density time

series. The period corresponding to the highest peak frequencies was 1 year (annual fluctuations), the peak

multiyear frequencies corresponded to 1 year 11 months and 1 year 1 month (Figure 7). There were similar

peaks of smaller size corresponding to seasonal fluctuations at 6, 4 and 3 months. Although the spectral
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Figure 7: The values of the Fourier coefficients of the vegetation density time series representing the average
of 178 time series in which the populations persisted for the whole 30 year period. The numbers next to
some of the points indicate the periods corresponding to the x-axis frequencies.

composition of the vegetation time series is rather different from that of the population density time series,

it does not preclude the possibility that the population density fluctuations are due to a forcing effect of the

vegetation fluctuations. Additional studies with different weather data sets may reveal a connection.

6 Discussion and summary

Our results indicate that the maximum vole population densities are not sensitive to the size of the

landscape but are sensitive and negatively correlated to the level of predation, while the average time to

extinction is sensitive to both. The ATE is positively correlated with landscape area. If the maximum

population density was the definitive factor for population persistence, then changes in area size should

not affect persistence. Thus, when evaluating the effect of loss of habitat on population persistence, the

important factor is not the maximum population density but abundance. The low persistence at small

landscapes is explained by decreased probability of restoring the population after severe (winter) periods
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due to the small size of the population and thus, the small number of clusters of remaining individuals that

can form couples and create offspring. The smaller the area of the habitat, the smaller the number of the

surviving clusters of individuals to restore the population. The model shows the existence of a threshold

prairie vole habitat area greater than 50x50 home ranges. More analysis is needed to understand well the

low persistence in small landscapes.

The ATE’s dependence on predation is more complex. There seems to be an ”optimal” predation level

(PL) maximizing the ATE: for lower and higher PL, the ATE decreases. At lower PLs, the rodent population

can go extinct because of overpopulation and overgrazing; at higher PLs the rodent population becomes too

small and cannot be sustained.

The persistence frequency also increases with area size. However, there is a threshold area value, larger

than 50x50 home ranges below which the persistence frequency is 0, i.e. in none of the simulated cases did

the population persist until the end of the simulated time period, even in the case of optimal predation.

The model is calibrated by adjusting the PL so that the population density varies in bounds that are

characteristic for tallgrass prairie. It turns out that the calibrated PL coincides with the ’optimal PL’.

This interesting observation leads to a hypothesis from the realm of evolutionary adaptation: the herbivore-

predator relationship has evolved in the specific environment so that the herbivore’s TE is maximized.

We can hypothesize that a predator-herbivore system in a certain environment consisting of climatic and

vegetation-type elements, adjusts in such a way that the rate at which the herbivore is predated ensures its

maximum persistence.

The simulated population densities exhibit annual and multiannual fluctuations with dominant frequen-

cies that are close to the ones reported by Getz et al. (2001) in a 25 year study of vole populations in

natural conditions. If this result is not a mere coincidence, it means that the elements of the vole population

dynamics we have assembled into a model, are sufficient to explain the multiyear fluctuations. Thus, one

way to establish the cause(s) for these specific fluctuations in the model is to study the sensitivity of the

dominating frequencies with respect to the elements of te model.

At the end, we discuss some issues regarding the generality and validity of our model.

First, our model ecosystem involves a single herbivore species feeding on a non-mixed diet of green

vegetation. It is plausible to consider what is the effect of coexistence with other herbivores utilizing the
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same environment. The presence of other small rodent species might have an effect similar to fragmentation

of the environment. Because of the territorial nature of these species resources will be divided and spaces

taken by other species will be avoided. The effect of the presence of small herbivores such as grasshoppers

or caterpillars on vegetation availability and population density has not been studied in this contest. We

assume that it is negligent because our simulations show that during the summer-fall months (when these

species are prevalent) the vegetation quantity surpasses by far the needs of the vole populations even at their

highest densities.

Next, it can be argued how realistic it is to fix parameters at the average value, such as the number of

offspring or the maximum lifespan of each individual animal, or the size of the home range. Our argument

for doing so is that the larger the quantity of stochastic variables in a simulation, the larger the amount of

simulations that have to be done to obtain statistically meaningful results. Defining the model ”as determin-

istic as possible” allows the avoidance of extremely computationally intensive simulations. Versions of the

model, with various extents of stochasticity are certainly possible; however they require the development of

estimates of the quantity of required simulation repetitions to achieve a reliable prediction and of algorithms

for achieving optimum simulation time for a given level of prediction reliability.

Finally, a model is valid until its predictions do not contradict to real observations. Currently we find

that the population densities and patterns our model produces fit well to field data.
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8 Appendix

8.1 Time loop rules

Here we describe how the new variable attribute values at time n + 1 are obtained from the old ones at

time n. We use the following notation: kj is the number of the spatial cell that has row rj and column cj

in the list of cells. At each iteration n the following rules are executed in the order they are described. For

each rule we use a formula to identify the values used (to the left of the arrow) and the values obtained (to

the right of the arrow).

Step I. This step is a loop that traverses all cells from 1 to K and executes the rule φ0.

φ0 : PopInit. This rule nullifies the values of all variable cell attributes (described in Table 3) for all spatial

cells.

φk
0 = PopInit → (0, ..., 0), k = 1, ..., K. (8.1)

Step II. This step is a loop that traverses all animals in the list from 1 to N(n) and consecutively executes

the rules φ1 to φ11.

φ1 : IncreaseCellPop. This rule updates the total number of animals, male and female adult animals and

resident male and female adult animals in the animal’s spatial cell by exhausting the list of animals. This is

done in the following way. If the number of the animal in the list is j, the variable popkj
is increased by 1,

malpopkj
, fempopkj

are increased by 1 if the animal object in the list has gender “m” or “f” respectively,

setlmalpopkj
, setlfempopkj

is increased by 1 if it has status “r” and has gender “m” or “f” respectively.

φj
1 =IncreaseCellPop(agej(n), rj(n), cj(n), genderj(n), statusj(n)) →

(popkj
(n + 1), malpopkj

(n + 1), fempopkj
(n + 1), setlmalpopkj

(n + 1), setlfempopkj
(n + 1)).

(8.2)

φ2 : GetOld. This rule increases the age of each animal by 1 (day): agej(n + 1) = agej(n) + 1.

φj
2 = GetOld(agej(n)) → agej(n + 1)

φ3 : GetV eg. This rule calculates the per capita caloric value of the vegetation available in the j-th animal’s

cell: evegj = vegetkj
/popkj

.
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φj
3 = GetV eg(vegetkj

(n), popkj
(n)) → evegj(n + 1) (8.3)

φ4 : MetabolicNeed. This rule calculates the daily metabolic need of each animal. The daily requirement

of an animal for energy is defined as its field metabolic rate (FMR). It is utilized for maintenance, basal

metabolism, thermoregulation and activity. There are several well known studies on the relationship between

the metabolic need and weight of mammalian species that conclude that the FMR is proportional to the

weight to the power of ≈ 3
4 , (Peters, 1993) (Nagy, 1994). This relationship is empirically postulated and

supported by a large variety of data. According to (Nagy, 1994), the average

FMR = 4.63W 0.756( in kJ/day) ≈ 1.1W 0.756( in kcal/day),

where the weight W is in grams.

Lactating mammals more than double their food intake (Gross et al., 1985), while pregnancy leads to

energy need increase of about 30% (Tamarin, 1985), p. 835. Thus, we calculate the metabolic need of an

animal j using the formula

MetNeedj = A × weight0.75
j (8.4)

where A=1.1 for non-pregnant (T imeSincePregn = 0) and non-lactating voles (T imeSinceBirth = 0);

A=2.2 for lactating voles (T imeSinceBirth > 0) and A=1.5 for pregnant voles (T imeSincePregn > 0).

Juvenile animals depend entirely on the the lactating parent. The metabolic need of a juvenile is included

in the lactating parent’s need, thus A = 0, if agej < WeaningAge.

φj
4 =MetabolicNeed(agej(n + 1), genderj(n), weightj(n), T imeSinceBirthj(n), T imeSincePregnj(n)) →

MetNeedj(n + 1).

(8.5)

φ5 : Weight. This rule calculates the weight of each animal, depending on the quantity of available vegetation

in its current spatial cell. It also calculates the index starvation.

The weight gain and loss of a specific animal depends on whether the per capita caloric content of

the vegetation in the cell, eveg, meets the metabolic need of the animal. Weight gain is modeled in a

way specific to the age status of an animal. A juvenile animal gains weight with a daily rate equal to
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JuvenileGrowthRate. Unless they die due to the absence of the lactating parent, all juvenile voles have the

same weight at weaning age. If the animal is above weaning age but below maturation age (subadult), then

evegj is compared to the metabolic need, MetNeedj(n) of the animal. The animal loses/gains weight with

a rate equal to the SubadultGrowthRate. The values of JuvenileGrowthRate and SubadultGrowthRate

(Table 1) are well established for Microtus species (Tamarin, 1985).

When an animal reaches adult age and size, its growth continues up to a maximum value for the species,

MaxAdultRate. We assume that if the animal’s metabolic needs are met, its weight grows proportionally

to the difference between the current weight and the maximum, MaxAdultRate− weightj :

weightj(n + 1) = weightj(n) + α(MaxAdultRate − weightj(n)). (8.6)

If the animal’s needs are not met, the animal loses weight. The energy content of tissue E is assumed to

be 70 kJ/g=16.8kcal/g (Peters, 1993). During full starvation the amount of lost weight per day would be

equal to MetNeed/E. Therefore weight loss is described as

weightj(n + 1) = weightj(n) − A.weightj(n)0.75/E. (8.7)

The value of A is the same as the one used when determining the metabolic need (see rule φ4). The value

of the index starvation for each animal is calculated daily. It is increased with 1 if the animal’s metabolic

need is not met and set to 0 otherwise.

φj
5 =Weight(evegj(n + 1), agej(n + 1), weightj(n), MetNeedj(n + 1))

→ (weightj(n + 1), starvationj(n + 1)).

(8.8)

φ6 : V egDeplet. This rule calculates the quantity of vegetation consumed by each animal and adds this

quantity to the variable vegdeplet of the respective cell the animal resides at present. This function calculates

the quantity of vegetation (expressed as caloric value) that would be grazed by all animal objects in each

cell according to their metabolic needs. The sum of the metabolic needs of all animals in the cell (numbered

k) is calculated and this defines the value of the variable vegdeplet.

vegdepletk =
∑

j=1,N

MetNeedkj
δk(kj), (8.9)

where δk(kj) = 1 if kj = k and 0 otherwise.
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This function also calculates the maximum weights of the male and female floaters, malmaxweight,

femmaxweight, currently present in the cell. These values are later used in the function ChangeStatus.

φj
6 =V egDeplet(rj(n), cj(n), MetNeedj(n + 1), vegdepletkj

(n), malmaxweightkj
(n), femmaxweightkj

(n))

→ (vegdepletkj
(n + 1), malmaxweightkj

(n + 1), femmaxweightkj
(n + 1)).

(8.10)

φ7 : Survive. This rule calculates the value of the variable remove for each animal. If it takes the value 1,

the animal object is removed from the list.

The survival of an individual vole depends on many factors. In our model we assume that the most

important ones are age, starvation, predation and dispersal out of the region. This function controls the

value of parameter removej based on its dependence on the first three factors. The dependence of survival

on dispersal is controlled by the function ChangeLocationRandomly (see rule φ11 below).

Voles are heavily predated by a large number of midsize mammals, raptors and avians, (Lin and Batzli,

1995), (Tamarin, 1985). Predation is an important factor in sustaining vole populations. Predation is

modeled in the following way. Certain fractions of adult and immature animal objects are taken away from

the list at each time increment (day). These fractions depend on the mean animal density for the whole

region and differ for mature and immature animals. The fraction of predated immature animals (juveniles and

subadults) is larger than the fraction of adults (as supported by experimental data (Lin and Batzli, 1995)).

Denoting the fraction of predated adults by PA, and of juveniles by PJ , these quantities are expressed as

PA = AdultPredationCoefficient

∑NCols,NRows
k=1,l=1 popk,l

TotalUsableArea
(8.11)

where popk,l is the population of cell in row k and column l, the total usable area is the total area in ha of

all inhabitable cells, and similarly:

PJ = JuvenilePredationCoefficient

∑NCols,NRows
k=1,l=1 popk,l

TotalUsableArea
. (8.12)

Thus, we have incorporated density-dependent predation in the model (the denser the vole population

is, the larger fraction of it is being predated). The rationale behind this assumption is that denser prey

populations are easier to detect and catch. Predation is realized in the code by removing each 1/PA-th adult

and each 1/PJ -th juvenile in the list each day.
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It is accepted that starvation leads to death if an animal has reached half of the average weight for

its age, (Peters, 1993). Starvation can be full or occasional. During occasional starvation, an animal

may not be able to maintain a healthy weight and would eventually die. We implement this by removing

from the list the adult animal objects whose weight is less than half the weight of a fully grown subadult

(SubadultGrowthRate∗MaturationAge) and the subadult objects whose weight is less than half the weight

of a fully grown juvenile (JuvenileGrowthRate ∗WeaningAge). A juvenile animal is removed from the list

if there is no female resident in the cell (presumably, the lactating parent has left the cell due to insufficient

vegetation, see rule φ10, or has been predated).

On the other hand, full starvation (starvation for several consecutive days) may not lead to losing sub-

stantial weight before death. As pointed out in the beginning of section 3.2, voles (smaller in size than M.

ochrogaster) have been observed to die after one day of full starvation due to hypoglycemia without really

losing substantial weight. In our code, an animal object gets removed from the list if the value of the index

Starvation has reached StarveLimit.

Finally, an animal object gets removed from the list also if its age is above the value LifeSpan.

φj
7 = Survive(agej(n + 1), starvationj(n), weightj(n + 1)) → remove(n + 1). (8.13)

φ8 : Pregnancy. This rule sets the variable T imeSincePregnj to 1 if certain conditions are met. Setting

the value to 1 denotes the occurrence of a pregnancy. This variable is set to zero originally (see Section 3.3).

T imeSincePregnj takes the value 1 only if

removej = 0, genderj =′ f ′, agej > MaturationAge, statusj =′ s′, T imeSincePregnj = 0

and malpopkj
> 0.

(8.14)

That is, pregnancy occurs only if the animal is a non-pregnant adult resident female, and if there is a

male occupant of the cell.

If the remainder of n (the time in days), divided by 360 is less than 30 or larger than 330 (that is, in the

“months of December and January”), this map is not applied, i.e. pregnancies are not allowed to occur in

the winter months, which corresponds to observations (Tamarin, 1985).
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φj
8 = Pregnancy(removej(n + 1), genderj(n), agej(n + 1), statusj(n), T imeSincePregnj(n), malpopkj

(n + 1))

→ T imeSincePregn(n + 1).

(8.15)

φ9 : GiveBirth. This rule controls the values of the variables T imeSinceBirth, T imeSincePregn and birth.

birthj takes the value 1 only if statusj =′ s′ and T imeSincePregnj = GestPeriod. When this happens, the

animal gives birth to 4 new animals; i.e. 4 new animal objects are created, 2 of male, 2 of female gender.

The variable T imeSincePregnj increases with 1 daily only if it is positive until it reaches the value

GestPeriod. In the latter case the index birthj is given the value 1 (birth occurs), T imeSincePregnj is set

to 0 and the value of T imeSinceBirthj is set to 1. The variable T imeSinceBirth defines whether an animal

is lactating or not. Once it gets the value 1, it gets increased until it reaches WeaningAge when it is set to

0.

φj
9 =GiveBirth(agej(n + 1), removej(n + 1), genderj(n), statusj(n), T imeSinceBirthj(n),

T imeSincePregnj(n + 1), malpopkj
(n + 1))

→ (T imeSinceBirthj(n + 1), T imeSincePregnj(n + 1), birth(n + 1)).

(8.16)

φ10 : ChangeStatus. This rule determines which vole changes its residency status between ’s’ (resident) and

’f’ (floater). Voles strive to become residents of a cell and to form heterosexual pairs. Unless their strategy

is successful, they do not generate offspring. The survival and persistence of the population is dependent on

the successful spatial settlement of vole couples.

At the initialization of the code, all voles are generated to be floaters. Then they start attempts to

become residents of a cell. The rules encoded in this function are described as follows. Before reaching

maturity, voles are residents of their parents’ cell. Upon reaching adulthood, a vole becomes a floater. A

resident vole becomes a floater if the per capita quantity of vegetation, eveg is less than its metabolic need.

An adult female floater vole becomes resident if there is no settled vole in the cell of the same gender and

if it has the largest weight among all floaters of the same gender in the cell. These conditions have to be

fulfilled for a male floater to become a resident but in addition, there must be a female animal present in

the cell. These rules reflect experimental findings that female voles prefer to settle in unoccupied territories,

while male voles would seek for a female in addition.
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The maximum weight assumption models a situation where the strongest prevail in competition for space.

The imposed conditions ensure that only one couple is formed in an empty cell. As only one couple (with

its immature offspring ) occupies a cell with the size of a vole’s home range, our rules also reflect territorial

behavior.

φj
10 =ChangeStatus(agej(n + 1), removej(n + 1), rj(n), cj(n), genderj(n), statusj(n), weightj(n + 1),

MetNeedj(n + 1), settlmalpopkj
(n + 1), settlfempopkj

(n + 1), settlpopkj
(n + 1),

malmaxweightkj
(n + 1), femmaxweightkj

(n + 1)) → (statusj(n + 1)).

(8.17)

φ11 : ChangeCellRandomly. This rule defines the rules of movement of floater voles between cells. They

combine food resource and population pressure considerations and also model the possibility of perishing by

entering non-inhabitable cells or leaving the region under population density pressure.

Each floater animal ”considers” the cells belonging to the region and surrounding the one it is currently

in, and makes a list of those that have vegetation of the suitable kind (presence = V egetationCode). This

list is split into two sublists: a) “first-rate” cells that have no occupants (pop = 0) and have vegetation

quantity satisfying its metabolic need (veget > MetNeed) and b) “second rate “ ones that have insufficient

vegetation at that time but are also not populated.

If the first-rate list is not empty, the floater chooses a cell to move in randomly from among the list’s

members. Otherwise, a random choice is made from the members of the second-rate list. If this one is empty

too (i.e. all inhabitable cells have been populated) the floater would be forced to move into a cell that is not

inhabitable, i.e such that presence 6= V egetationCode but penetrable (i.e.presence 6= 0). Such cells might

be inside the spatial region. But if the current cell is on the region’s boundary and there are no inhabitable

neighboring cells in the region, the floater is forced to leave the region. In this case the value of removej

becomes equal to 1.

However, if such a movement is not possible because of lack of uninhabitable neighborhood, the animal

chooses randomly among the inhabitable but populated cells. Finally, if there are no inhabitable and

populated cells, then this means that all neighboring cells are inpenetrable. Obviously then the animal
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would stay in the cell.

φj
11 = ChangeCellRandomly(rj(n), cj(n), vegetkj

(n)) → (removej(n+1)), rj(n+1), cj(n+1)), j = 1, ..., N(n).

(8.18)

Step III. This step is a loop that traverses the list of cells and executes the rule φ12.

φ12 : V eg. This rule calculates the caloric content of the vegetation present in a specific cell Ck . Its increase

resulting from vegetation growth is

DigEnergy × Wn × AreaOfCell

(for Wn see section 2.1). The decrease resulting from grazing is just vegdepletK. It is subtracted from the

increase and the result is added to vegetK(n) to obtain vegetK(n + 1).

φk
12 = V eg(vegdepletk(n + 1), vegetk(n)) → vegetk(n + 1), k = 1, ..., K. (8.19)

Step IV. Finally, the list of animals is updated in order to proceed to the next iteration n + 1.

φ13 : UpdateListOfAnimals. This rule acts as follows. The list of animal objects ~aj , j = 1, ..., N(n) is

traversed. If removej(n + 1) = 1 for some j, this object is removed from the list. If birthj(n + 1) = 1, 4 new

animal objects are created. These have age 0, 2 are male and 2 are female, all are residents, have weight

equal to WeightAtBirth and inherit from the parent the cell coordinates. These objects are added to the

end of the list.

8.2 Representation of Φ(n)

The map Φ is a product of the elementary maps φi and can be written as

Φ(n) = φ13Π
K
k=1φ

k
12Π

N(n)
j=1 φ11φ10φ9φ8φ7...φ1Π

K
k=1φ

k
0 . (8.20)

This representation holds for values of n whose remainder modulo 360 is greater than 30 and less than

330, i.e. in the ”non-winter period”. As mentioned before, the map φ8 is not executed otherwise, so then

Φ(n) = φ13Π
K
k=1φ

k
12Π

N(n)
j=1 φ11φ10φ9φ7...φ1Π

K
k=1φ

k
0 . (8.21)
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The product notation has the following meaning. A map on the right of another is executed first. That

is, first are applied φk
0 for all k (that is the cell information is updated), then, for each j (from 1 to N(n))

the maps φ1, ..., φ11 are executed (i.e. for the first animal in the list of N(n) animals the maps φ1
1, ..., φ

1
11(n)

are applied in that order, next the same is done for the second animal and so on until the list is exhausted).

Further, φk
12 are applied (i.e. the vegetation remaining in the cell at the end of the day is calculated) and

finally the list of animals is updated by adding newborn animals and removing “dead” ones, which is the

meaning of φ13.

Writing down a simulation in such a precise mathematical form represents an attempt to create a com-

mon form of presentation which facilitates the understanding of the model structure, lays a foundation for

development of a theoretical framework as well as a common computational framework.
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